

USAFOEHL REPORT

86-034RA121ERD

RESULTS OF THE 1985 RADIOLOGICAL SURVEY
AT FORT DIX BOMARC SITE NJ

EDWARD F. MAHER, MAJOR, USAF, BSC

JUNE 1986

Annual Report

Distribution is Unlimited, approved for public release

USAF Occupational and Environmental Health Laboratory
Aerospace Medical Division (AFSC)
Brooks Air Force Base, Texas 78235-5501

NOTICES

When Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever. The fact that the Government may have formulated, or in any way supplied the said drawing, specifications, or other data, is not to be regarded by implication, or otherwise, as in any manner licensing the holder or any other person or corporation; or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

The mention of trade names or commercial products in this publication is for illustration purposes and does not constitute endorsement or recommendation for use by the United States Air Force.

Do not return this copy. Retain or destroy.

Air Force installations may direct requests for copies of this report to: USAF Occupational and Environmental Health Laboratory (USAFOEHL) Library, Brooks AFB TX 78235-5501.

Other Government agencies and their contractors registered with the DTIC should direct requests for copies of this report to: Defense Technical Information Center (DTIC), Cameron Station, Alexandria VA 22314.

Non-Government agencies may purchase copies of this report from: National Technical Information Service (NTIS), 5285 Port Royal Road, Springfield VA 22161

The Public Affairs Office has reviewed this report, and it is releasable to the National Technical Information Service, where it will be available to the general public, including foreign nations.

This report has been reviewed and is approved for publication.

Commander

Prepared by:

EDWARD F. MAHER, Maj, USAF, BSC Chief, Radioanalytical Services

Branch

Reviewed by:

DAVID R. CASE, Lt Col, USAF, BSC Chief, Radiation Services Division

ADA	170058
11011	110000

			REPORT DOCU	MENTATION	PAGE		
1a. REPORT SE	CURITY CLASSIF	ICATION		1b. RESTRICTIVE	MARKINGS		
Unclassif				N/A			
2a. SECURITY N/A	CLASSIFICATION	AUTHORITY	·	3. DISTRIBUTION			
26. DECLASSIF	ICATION / DOW	NGRADING SCHE	DULE	Distribution public relation		nited; app	roved for
N/A				<u> </u>			
		ON REPORT NUM 034RA121ERI		5. MONITORING	ORGANIZATION	REPORT NUM	BER(S)
	_			N/A			
6a. NAME OF USAF Occu	PERFORMING O	RGANIZATION nd Environ-	Gb. OFFICE SYMBOL (If applicable)	7a. NAME OF MO	ONITORING ORG	ANIZATION	
	alth Labor		RZA	N/A			
6c. ADDRESS	(City, State, and	ZIP Code)		7b. ADDRESS (Cit	y, State, and Zi	P Code)	
Brooks AF	B TX 7823	5-5501		N/A			
8a. NAME OF ORGANIZA Same as 6		ISORING	8b. OFFICE SYMBOL (If applicable) N/A	9. PROCUREMENT	I INSTRUMENT	IDENTIFICATIO	N NUMBER
8c. ADDRESS (City, State, and	ZIP Code)		10. SOURCE OF F	UNDING NUMB	ERS	
	·			PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO.	WORK UNIT ACCESSION NO
- 4	اسبكيت بالمسيد بيسيدي				<u> </u>		
11. TITLE <i>(inci</i>	lude Security Cla	essification)					
Results o	f the 1985	Radiologic	al Survey at the	Fort Dix BOM	ARC Site,	ŊĴ	
12 PERSONAL		Maj, USAF,	RSC Case	David D te	Col UCAT	e non	
13a, TYPE OF			COVERED	David, R., Lt 14. DATE OF REPO June 19			AGE COUNT
Annual		FROM	f0	June 19	786		66
16. SUPPLEME	NTARY NOTATI	ON					
عامره والمتعارف والمتعارف والمرازة		-			ب در در در استواه برای این این این این این این این این این ا	والمتعادية والمتعادية والمتعاددة	
17	COSATIC		16. SUBJECT TERMS		·		
FIELD	GROUP	SUB-GROUP	BOMARC Rad	iological Sur	vey WAI	CCH-DOG PL	UTO Ft Dix
			Plutonium	Enviro	nmental Ra	dioactivi	ty
i	•		ry and identify by block				
This rep	ort docume	nts the res	ults of radiolog	ical surveys	and enviro	nmental s	urveys and
accident	ental samp.	t Dir Ni Tius condac	ted during the a	nauai Kadiolo	gical Surv	rey at the	1960 BOMARC
Sciences	Division.	USAFOEHL.	during 15-21 Sep	e pertormeu o rember 1985	y personne The renor	er conclud	e kadiation es that the
pluconiu	m contamin	ation appea	rs to be still f	ixed under th	e reinford	ed concre	te apron in
front of	the missi.	le shelter.	Little or no ve	ertical movem	ent of the	plutoniu	m has occurred
in the s	oil since	the acciden	t. Significant	plutonium con	tamination	was not	found outside
the BOMA	RC site bo	undary. No	ne of the off-si	te sampling l	ocations e	xceeded t	he USEPA's
proposed	limits to	r transuran	ics in the uncon	trolled envir	onment.		
20 DISTRIBU	TION / AVAILABI	LITY OF ABSTRAC	.7	21 ABSTRACT SE	CURITY CLASSI	FICATION	
		D SAME A	S RPT DTIC USER				
	of RESPONSIBLE ward F. Mal			226 TELEPHONE (512) 536-	•	ode) 22c OFF	
والتناز والمساولة والمراث	473, 84 MAR		APR edition may be used t				ينته بهر مستون بالرابك به را تانسه رو بست
ひひ アンススペー!	7/3, 04 MAX	0.2	· ··· ·· GOITION IN ST OF OPEN!	****** #****##########################	SECURI	ΤΥ ΓΙΔSSIFICΔ	TION OF "HIS PAGE

All other editions are obsolete

UNCLASSIFIED

ACKNOWLEDGMENTS

USAFOEHL extends its gratitude and appreciation to the various offices and individuals at McGuire AFB for their strong support and assistance during this survey. In particular, we thank the following persons for their participation in the survey and generous support: Col Sula, Base Commander; Lt Col Suzanne Phillips, Public Information Officer, Lts Matthew Smith and David Wannigmam, MSgt Thomas Lanoue, SSgts Thomas Jordan and Kevin Midder, SrA Tonya Gibson, Amn Stephan Baffic, and Mrs Clarine Sawyer from the USAF Clinic Bioenvironmental Engineering Section; and Sgts Robert Hilliard and Diana Jordan, SrA Cor Fahringer and John Boscoe, A1Cs George Jump, Michael Schnars, Phil Davis and Judithe Metcalf, and Amn Craig Stevenson of the USAF Clinic Environmental Health Office. We also extend our sincere thanks to all those who supported the USAFOEHL team, but whose names may have escaped our attention.

Accesion For
NIIS CRASI
DTIC TAB LI
Unannounced Q
Justification 🛴 👢
The state of the s
By
Deat belied
Assistanty Codes
Will and of
Dr.f Special
10-1
To. 1

TABLE OF CONTENTS

			Page
DD	Form 14	73	i
Ack	mowledg	ments	iii
Lis	t of Il	lustrations	V
ı.	INTROD	UCTION	1
II.	BACKGR	OUND	1
III.	SURVEY	METHODS AND PROCEDURES	2
IV.	RESULT	S AND OBSERVATIONS	4
٧.	CONCLUS	SIONS AND RECOMMENDATIONS	9
VI.	REFERE	NCES	11
	Appendi	ix	
	A	Soil Sample Results (1975-1985)	47
	В	FIDLER Survey Data (1985)	57
	Distri	bution List	63

LIST OF ILLUSTRATIONS

Figure	<u>Title</u>	Page
1	FIDLER Survey Grid, BOMARC Site	12
2	FIDLER Intensive Grid, Concrete Apron	13
3	Soil Sampling Sites, BOMARC Site	14
Ħ	Soil Sampling Sites, Ditch Runoff Area	15
5	1985 Pu-239, 240 Soil Concentrations BOMARC Site	16
6	1985 Pu-239, 240 Soil Concentrations Ditch Runoff Area	17
7	1985 Off-Site Sampling Locations	18
8	1985 Government Well Sampling Sites	19
9	Vertical Pu-239 Soil Distribution, Site 107	20
10	Vertical Pu-239 Soil Distribution, Site 107A	20
11	Vertical Pu-239 Soil Distribution, Site K0671	21
12	Vertical Pu-239 Soil Distribution, Bunker	21
13	Downwind Areas from BOMARC Accident Site	22
Table	<u>Title</u>	Page
1	FIDLER Measurements for Pu-239 Aerial Density	23
2	Gross Alpha and Pu-239 Concentrations in Residential Well Water	30
3	Gross Alpha and Pu-239 Water Concentrations for Off-Site Sampling Locations	31
4	Soil Radionuclide Concentrations for Off-Site Sampling Locations	32
5	Gross Alpha and Pu-239 Concentrations in Water from Government Wells	34
6	Soil Pu-239 Vertical Distributions	35
7	Soil Sample Radionuclide Concentrations for the BOMARC Site	36
8	Aerial Dispersion Modeling Results	46

I. INTROLUCTION

- A. During 15-21 September 1985, personnel from the Radiation Services Division of the USAF Occupational and Environmental Health Laboratory (USAFOEHL/RZ) conducted the annual radiological survey of the Fort Dix BOMARC Site, New Jersey. Periodic environmental monitoring on and around the BOMARC site has been ongoing since 1975 as part of the Air Force's program to maintain the deactivated site and to monitor the residual plutonium left as a result of the BOMARC missile fire in 1960.
- B. The periodic environmental monitoring plan for this installation was implemented in 1975 at the direction of the USAF Surgeon General (re: HQ USAF/SGPP Ltr, 12 Jun 73) under the operations plan entitled "WATCH-DOG PLUTO". Since then, radiological site surveys have been completed in 1976, 1978, 1979, 1981, 1982, 1983, 1984, and 1985. This report contains the results of the 1985 site survey, observations, sample analyses, interpretations, and recommendations for future surveillance.

II. BACKGROUND

- A. On 7 June 1960, an explosion and fire erupted in BOMARC missile launch shelter No. 204 of the now-deactivated 46th Air Defense Missile Squadron (ADMS), located on the Fort Dix Military Reservation, New Jersey. The missile and its nuclear warhead were consumed in the intense fire. As part of the firefighting activities, copious amounts of water were used to control the fire and to prevent it from spreading to any of the other 84 missile shelters in the complex. As a result, a yet unknown portion of the warhead's fissile material (plutonium) was flushed from inside the shelter and either contaminated the soil and asphalt in front of shelter 204, or was washed down the asphalt ramp into a drainage ditch (re: Figure 1). The precise amount of plutonium contained in the missile warhead remains classified to this day and will not be mentioned in this report.
- 8. The drainage ditch runs southerly from shelter 204, paralleling the site boundary fence for several hundred feet before entering an underground culvert, and crossing underneath County Highway 539. From this point the culvert opens into a sandy ditch that eventually flattens into a heavily wooded area across the highway. A third, but unlikely, possibility for the fate of the fissile material is that a portion of it might have been carried aloft in the fire and dispersed Gownwind (SSW) of the BOMARC site. The rationale that this possibility is unlikely will be discussed in Section IV.E of this report.
- C. About one year after the accident, four inches of reinforced concrete were poured over the asphalt apron in front of missile shelter 204 in an effort to "fix" the plutonium contamination under a protective overburden. In addition to this, two inches of asphalt were placed along the bottom of the drainage ditch located inside the site boundary fence. Early radiological surveys in 1970-1973, conducted by USAFOEHL's predecessor, the USAF Radiological Health Laboratory (USAFRHL), have shown most of the plutonium is under the concrete pad in front of the shelter or in the uncovered grassy areas

adjacent to launch shelters 201-208. These areas have been the sites of highest contamination (10.0-120 μ Ci/m²). Vertical Pu-239 profiles in the soil near bordering edges of the concrete, conducted in 1973, indicated that the plutonium contamination was contained within the top 6-8 inches of soil (1). In addition to the above areas, lesser amounts are detectable along the entire length of the drainage ditch inside the boundary fence (< 0.5 μ Ci/m²).

- D. Off-site, in uncontrolled locations on both sides of highway 539, most of the contamination has been well below the U.S. Environmental Protection Agency's (USEPA) proposed "screening level" for limiting the public's exposure to transuranics of 0.2 microcuries per square meter (0.2 μ Ci/m²) (2). At the few off-site locations that have in the past been found to exceed the proposed "screening level", there has not emerged an apparent trend of either decreasing or increasing plutonium soil contamination. A 10-year summary of the Pu-239 levels measured on and off the BOMARC site and trend analysis, as well as an interpretation of the results have been recently published in USAFOEHL Report 85-151RZ121JRD (3).
- E. Although soil sampling and instrument surveys at the BOMARC site have been extensive over the past ten years, ground or surface water monitoring for plutonium has been minimal. Renewed concerns for the site by New Jersey State officials have recently elevated the issues of plutonium contamination of local hydrogeological units. A second State concern had to do with the downwind airborne dispersion of plutonium from the site during the 1960 incident, and the residual contamination currently present in these downwind areas. In response, the USAF Surgeon General tasked USAFOEHL to expand its monitoring efforts on and off the site to: (1) determine the impact of the plutonium contamination on local groundwater supplies and on the major hydrogeological formations in the region; and (2) make preliminary predictions of the expected airborne Pu-239 concentrations and ground contamination levels downwind at the time of the incident.
- F. Both of these State concerns have been responded to through preliminary assessments conducted by USAFOEHL for HQ MAC/SGPB during October and November 1985 (4.5). The results of these groundwater measurements and air dispersion modeling are repeated in this report. In addition, the 1985 survey incorporated 15 new sampling locations as far away as 10 miles downwind from the accident site. Most of these new sample sites were located inside and about the artillery impact areas of the Fort Dix Reservation and along Routes 70 and 539.

III. SURVEY NETHOUS AND PROCEDURES:

A. Instrumental Monitoring: The entire BONARC site and areas immediate to the site boundary were extensively surveyed using FIDLER (field instrumentation for the detection of low energy radiation) instrumentation. (The FIDLER, consisting of a scintillation probe (5 in diameter x 1/8 in thick NaI[TL]) in combination with an Eberline Instrument Corporation (model PRM-5) survey meter, was used to record the external radiation count rate at the grid locations shown in Figures 1 and 2.) The gross count rate data were collected at high voltage settings (windows) optimized for 17, 60, and 90 keV photons.

The former two energies represent x-ray energies from Am-241, which is a signature for the presence of plutonium. The latter energy represents a broad-average energy for natural background radiation. The gross count rate data were corrected for background radiation and various calibration factors, and then converted to plutonium areal density expressed as microcuries per square meter of soil (μ Ci/m²).

- Soil Samples: Representative soil samples were collected from on-site and off-site areas shown on Figures 3, 4 and 7, respectively. The samples were collected by taking eight core samples (3" diameter by 8" deep) it. a four point "cross" pattern at a distance of 15 and 30 feet from the center of each sampling site. A single site collection resulted in approximately 6 Kg of soil. Upon arrival at the Laboratory, each soil sample was dryed, blended, and homogenized prior to being processed for counting. All soil samples were first analyzed for gamma-emitting radionuclides using high-resolution (GeLi) gamma spectroscopy. The counting configuration consisted of a homogeneous sample sealed in an aluminum can (8 cm diameter x 3 cm deep) centered inside a 600 ml Martinelli Beaker. Secondly, approximately 10 grams of each soil sample were radiochemically processed for plutonium isotopes and analyzed by high-resolution alpha spectrometry. The radiochemical procedures called for the dissolution of the 10 grams with a series of strong acids (nitric, hydrofluoric, and hydrochloric), extraction of the plutonium using a resin column, and electroplating the residual on a stainless steel planchet (6). Transfer efficiencies for the method were determined to be better than 40% using a radioisotopic tracer of plutonium-242. New Jersey Department of Environmental Protection (NJDEP) employees duplicated about 10% of all soil samples. Split samples were sent to NJDEP upon completion of the soil blending at USAFOEHL.
- C. Water Samples: The 1985 annual survey included water analysis for plutonium concentrations in numerous on- and off-site locations. This included well water samples from nearby private residences and several Government-owned wells on the site or on adjacent installations (re: Figure 8). All these sample results were reported in an earlier USAFOEHL letter to HQ MAC/SCPB, dated 31 Oct 85 (4). An additional 11 water samples were collected from off-site locations shown in Figure 7. These samples comprised a representative survey of surface and well waters that were downwind from the BOMARC complex during the missile fire. Water samples were collected in 1gallon collapsible plastic containers and stored without preservation until analyzed. Gross alpha concentrations were measured by evaporating a 200 mL volume of acidified water on a 2-inch stainless steel planchet and counting the residue in a windowless gas-flow proportional counter. Plutonium concentration was determined by coprecipitation with alkaline earth phosphates in a one liter sample. Plutonium was extracted using an ion exchange resin column. electrodeposited onto a 10 mm stainless steel planchet and counted using an alpha particle spectrometer (7,8). The minimum detectable activity for Pu-239 was generally less than 0.01 piccouries per liter.
- D. Vertical Pu-239 Profiles in Soil: Four soil sampling sites were selected to study Pu-239 concentrations as a function of soil depth. These samplings were useful in determining the vertical profile of plutonium in the soil as an indicator of the extent of the downward migration of plutonium compounds. Vertical distributions were measured at one-inch depth intervals

from the surface down to one foot. One additional sample was collected at a depth of two feet. The four locations chosen for vertical distribution measurements included site numbers 107, 107A, and K0671 (re: Figure 4), and a final sample from a site of high contamination adjacent to the burned-out missile shelter 204. The latter is referred to as the "bunker" site. The samples were collected by digging a rectangular trench approximately 4 feet long by 2 feet wide down to a depth just beyond two feet. Vertical samples were taken from the walls of the trench using a 4" wide by 1" high rectangular coring shovel. Approximately 1 kg of soil was collected at each level. Great care was taken during the sampling to preclude contaminating lower levels with soil from above. These soil samples were processed and analyzed in the same manner as described above for the other soil samples.

E. Air Dispersion Hodeling: Preliminary estimates of the downwind dispersion of plutonium that might have occurred during the accident were conducted in November 1985 and reported to HQ MAC/SGPB in a letter dated 22 Nov 85 (5). The approach taken was to use a relatively simple Gaussian dispersion model (9) with the available meteorological data at the time of the accident, assuming worst case conditions, to predict the plume touchdown points downwind. The assumptions and data used in the modeling effort were: the local winds were from the NNE at 3-8 knots (1.2-3.1 m/s); and the plume release height was between 50 and 400 feet (15-122 m). The dispersion modeling was conducted using the "A" and "C" Pasquill atmospheric stability classifications, which are typical of late afternoon conditions. Class "A" represents extremely unstable conditions (high vertical mixing) and the "worst case" conditions, whereas class "C" typifies slightly unstable atmospheric conditions (low vertical mixing). The modeling did not attempt to estimate downwind air concentrations since this would have required a suitable source term for the plutonium release, which still remains classified for national security reasons.

IV. RESULTS AND OBSERVATIONS

A. FIDLER Survey

- 1. The FIDLER survey measurements for plutonium areal density (µCi/m²) across the BOMARC site are given in Table 1. The grid measurement identifiers, i.e., column letter and row number for a particular measurement site refer to either Figure 1 or 2. Figure 2 denotes the locations of the intensified grid measurements conducted over the reinforced concrete slab and inside the highly contaminated area surrounded by the concertina wire. (Gross FIDLER counts [uncorrected] are given in Appendix B.) The results in Table 1 give either the estimated Pu-239 aerial density along with the coefficient of variation for the estimate (\$), or the minimum detectable areal density (MDAD). The latter is presented when the levels were low and statistically unreliable. The proper interpretation of the "less than MDAD" value is that there is a 95% probability that the true areal density is less than the stated MDAD.
- 2. As expected, the highest plutonium areal densities were found over the concrete slab in front of the burned-out missile shelter and in the

adjacent grassy spots. The vast majority of the measurement points outside of the immediate accident shelter and concrete were too low to be reliability measured using hand-held instrumentation. The MDAD levels were all above the USEPA's "screening level;" for transuranics (0.2 μ Ci/m²), consequently, the FIDLER data are useful only in defining areas of relatively high plutonium contamination. A comparison of the 1985 FIDLER data with that of previous years indicates no substantial differences over what has been measured before (3).

B. Soil Samples

1. On-Site Levels

- a. Results of the soil core samples for plutonium concentrations for the on-site locations (re: Figure 3) are summarized in Figure 5. A comparison of these results with those of past years (1975-1984) is given in Appendix A. The 1985 gamma spectroscopy results for these same locations are tabulated in Table 7. Appendix A lists the soil plutonium levels in terms of activity per gram of dried soil and areal density (μ Ci/m²). The latter units allow for a direct comparison with the proposed (0.2 μ Ci/m²) "screening level."
- b. The soil sample points that exceed $0.2~\mu\text{Ci/m}^2$ included several near the launch shelters (sites 164, 166, 167, and 174), as well as sites next to the asphalt ditch and well inside the boundary fence (sites 172, 173, and 181). These results were not surprising since each had shown elevated levels in past years and were nearest to the burned-out launch shelter or adjacent to the drainage ditch which carried firefighting water runoff. Comparison to previous results show considerable variability, but each at one time or another exceeded $0.1~\mu\text{Ci/m}^3$.
- c. One sample point (site 118), located between the boundary fence and highway 539, was measured at 0.226 μ Ci/m². This site exceeded the screening limit once before in 1983. Adjacent site numbers 116 and 127 have also exceeded the screening level in past years (1976-1981), but have since been below this level. All three points were directly downwind during the accident and may have been fumigated by the fire plume. These results, despite their annual variability, are consistent with past years findings and no trends have developed in the plutonium concentrations.
- d. Areal densities in all other on-site locations were below 0.2 uCi/m² and relatively unchanged from previous surveys. There has been no evidence of plutonium soil contamination outside of the fenced boundaries to the north, east, or south of the BOMARC complex (sites 134-158). Soil results to the west side of the complex have been erratic, but show some plutonium contamination, particularly at the site numbers mentioned above. The fact that this side of the complex was downwind during the accident may be partly responsible; however, the fact that the firefighting water runoff flowed in this general direction is perhaps the most significant factor in the observed soil concentrations.

2. Ditch Rumoff Area

- a. Radiological data for the ditch runoff sampling points are also shown in Table 7 and Appendix A. Figure 4 is a larger scale diagram of the ditch runoff area and can be used to reference the exact locations of the sample site numbers. Plutonium areal densities measured in 1985 are depicted in Figure 6.
- b. Besides the few on-site points discussed above, the most significant plutonium contamination has been found in the runoff ditch area across from highway 539. Most notably, sites 107, 107A, and 109 have been well characterized as having been consistently above 0.1 μ Ci/m² during past surveys. The area was first identified as having elevated plutonium by an aerial survey in 1973. Areal densities for these three points have varied close to three orders of magnitude over the ten years of sampling (0.004-1.33 μ Ci/m²) with no apparent trend. We believe that the ditch and its lower level runoff area to the woods received the majority of the firefighting water runoff. The area continues to receive the greatest amount of the rainfall runoff from the complex today and is a low point in the local topology. The 1985 soil results confirmed that this area remains elevated (all three were approximately 0.5 μ Ci/m²) and deserve closer attention in future surveys. Sites 107 and 107A were selected for measurement for the vertical distribution of plutonium. These results are discussed in Section IV.D of this report.
- c. Sites 205-216, located at the far end of the runoff ditch and to either side, were not sampled in 1985. This general area will be extensively sampled in future surveys to determine the distribution of plutonium, both horizontally and vertically. Earlier surveys have shown areal densities in this area to be much less than the screening level, although its proximity to areas containing elevated plutonium causes it to be worth a closer look.

3. Off-Site Soil Samples

- a. Soil concentrations for gamma emitting and plutonium radionuclides at the eleven off-site locations are shown in Table 4. The site number locations are given in Figure 7. These sample points were all downwind during the missile accident and were of interest with regard to the aerial dispersion modeling. Their distances from the BOHARC complex ranged form 0.6 to about 15 kilometers in a general south-southwesterly direction.
- b. All but one site (Range Control) had plutonium concentrations within the range of normal background (< 0.007 µCi/m²). The slightly elevated plutonium level at the Fort Dix Range Control (0.11 µCi/m²) was unexpected, but still did not exceed the 0.2 µCi/m² level. The reason for this result is unclear; however, given the site's distance from the BOMARC complex (9 kilometers) and the absence of elevated plutonium in adjacent locations, it is unlikely that the contamination was due to the missile accident. Laboratory cross-sample contamination is one possible explanation; this is supported by the fact that the plutonium was unaccompanied by Am-241. A second sample will be analyzed at a later date to resolve the discrepancy. Other radionuclides present in the samples consisted of normal background concentrations of naturally occurring species of the primordal uranium and thorium decay series

members. The cesium-137 concentrations, although not naturally occurring, were probably the result of rainfall washout from 1950-1960 nuclear weapon atmospheric testing. None of these levels pose a health threat and are consistent with data at other locations in the United States.

C. Water Sampling

- 1. Residential Wells: Results of the gross alpha and plutonium measurements in the residential well samples are shown in Table 2. The samples were collected from tap water at seven private residences within 1-3 miles of the BOMARC complex. Gross alpha particle radioactivity for all seven satisfied the USEPA's Safe Drinking Water Act limits and no measurable plutonium was found.
- 2. Government Wells: Gross alpha and plutonium concentrations in all the government wells sampled met drinking water standards (< 5 pCi/liter). Plutonium concentrations were less than detectable limits. The results of these analyses are shown in Table 5. The sample locations included two wells in the BOMARC complex; the remaining site locations were on Lakehurst Naval Air Station as shown on Figure 8.
- 3. Off-Site Locations: Water samples were collected on most of the same sites as the off-site soil samples. Since these points were downwind at the time of the accident and included large lakes and wells tied to the local aquifers, their measurement was deemed important to determining if plutonium contamination was present in the major hydrogeologic units. Gross alpha and plutonium concentrations for these samples are given in Table 3. Sample locations are shown on Figure 7 and referenced to the same site numbering scheme as was used for Table 4. Again, all sample results satisfied gross alpha particle ratioactivity limits of the USEPA and the plutonium concentrations were below detectable limits.

D. Plutonium Vertical Soil Distributions

1. Sites 107 and 107A: Vertical profiles of the Pu-239 distribution in these soil sites are shown in Figures 9 and 10 and supported by Table 6. Both sites were located in the center of the runoff ditch across highway 539; site 107A being less than 100 feet more distal from the road and in the widening section of the ditch (re: Figure 4). The plutonium vertical profiles for the two sites were quite dissimilar; the possible reason is discussed later. The vertical distribution of site 107 appeared to be relatively uniform with depth. Although the 24-inch level had the greatest plutonium concentration (0.55 pCi/g), most of the other levels were smaller only by a factor of two or less. Given the statistical uncertainty of the sampling method, differences of this factor can generally be expected even in samples that are known to be homogeneous. Vertical distribution at site 107A, on the other hand, was extremely nonuniform and 98% of the measured plutonium was found in the first 3 inches below the surface; 80% within the first inch. These differences are difficult to explain, particularly when the sites are separated by only 100 feet. Based purely on speculation, it is believed that the amount of silt that deposits over these sites is very different and may be responsible for the dissimilar vertical distributions. Site 107,

because it is located in the narrow portion of the ditch should experience a more rapid build-up of silt from the rainwater runoff from the BOMARC complex. The runoff will contain a relatively low, but steady concentration of plutonium compounds from the complex that deposits uniformly (continuously) on the bottom of the ditch. Because of plutonium's low solubility, once deposited it is unlikely to be removed. Thus, the vertical distribution at site 107 may be the result of successive overlays of plutonium containing silt from above, rather than a migration of plutonium downward. A similar action also takes place over site 107A; however, there are several important differences. Because of the greater width of the ditch, larger overflow area, as well as less silt being available due to upstream deposits, it is expected that silt build-up at site 107A would be a considerably slower process, and that perhaps only 2-3 inches of plutonium containing silt could have been deposited over the 25 years since the accident. Though speculative, this explanation is pausible enough to explain these differences in the vertical distribution of plutonium between the two sites. Additional annual samplings will be needed to verify or refute this theory.

- 2. Site K0671: This site was also located in the runoff ditch, but on the opposite side of the highway from site 107 and 107A. Results of the vertical distribution measurements for plutonium are depicted in Figure 11 and summarized in Table 6. The vertical distribution of this site was very similar to that of site 107, i.e., relatively uniform plutonium concentrations with depth. Because the physical characteristics of these two sites are basically identical, the reason for the uniform distribution is believed to be the same as discussed above. This site had not been sampled prior to 1985, and therefore no data are available to compare the results with. Samples from this site were split with the New Jersey Department of Environmental Protection (NJDEP).
- 3. Bunker Site: The final vertical distribution sampling point was selected in an uncovered grassy area near the burned-out missile shelter. Vertical sampling results for this site are shown in Figure 12 and Table 6. The samples taken from this area were highly contaminated (> 100 nCi/g) and therefore extreme care and protective equipment were required to prevent contamination of personnel and equipment. All bunker samples for plutonium were measured using gamma spectroscopy because of the high potential for contaminating the alpha spectrometry detectors and/or laboratory personnel. The vertical distribution of plutonium was found to rapidly decrease with increasing depth. Essentially, all of the plutonium was located within the first 6 inches of soil. This observation is consistent with that of the 1973 vertical measurements and supports the conclusion that the plutonium compounds on-site were very insoluble and were not migrating downward.

E. Aerial Dispersion Modeling

1. The analyses of the aerial dispersion modeling is summarized in Table 8 and were extracted from reference 9. The results suggest that the touchdown of the plume probably occurred between 0.01 and 0.1 kilometers from the missile shelter within compass headings between 187 and 212 degrees (re: Figure 13). Although airborne concentrations and ground deposition figures were not estimated for security reasons, this sector provides a reasonable boundary for the areas that should be sampled in future surveys.

2. Results of the plutonium soil concentrations in the sectored area of Figure 13 were negative, as discussed earlier, baring the range control soil sample (off-site 11) where the elevated plutonium concentration was believed to be a laboratory artifact.

V. CONCLUSIONS AND RECOMMENDATIONS

- A. The potable and nonpotable water supplies tested during the 1985 annual survey do not indicate that the local hydrogeologic units have been contaminated by the release or migration of plutonium that resulted during or since the missile fire.
- B. Results of the soil samples on and adjacent to the BOMARC complex are not substantially different from the results of previous year's surveys. Areas known to have elevated plutonium areal densities were, by and large, confirmed. Despite the annual variations that typify some sampling locations, there is no evidence to suggest that large scale plutonium migration is occurring. The bulk of the plutonium compounds released remain fixed under the reinforced concrete slab in front of the missile shelter. Instrument surveys supported the soil sample results in the higher contaminated missile shelter areas.
- C. Runoff rains from the missile shelter area into the drainage ditch passing underneath the highway may carry low levels of plutonium compounds into the ditch and outflow areas on the other side of Highway 539. The extent to which this is happening has not been quantified, except to note that plutonium concentrations on the soil surface have not changed much over a ten year period. Vertical distribution measurements for plutonium at two points in the ditch show a relatively uniform vertical distribution. This is consistent with the theory that minute amounts of plutonium are continually being deposited at the bottom of the ditch and over the outflow areas. This phenomenon needs to be investigated more thoroughly before a definitive conclusion can be reached.
- D. The USAFOEHL should continue to monitor the site annually for the migration of plutonium as evidence of continued USAF responsibility for the area. The survey protocol should consist of the following:
- 1. Soil sampling at selected sites on and off the BOMARC complex with increased emphasis on the sites between the missile shelters and Highway 539, the runoff ditch across the highway, and off-site points within the sectored area of Figure 13. Vertical distribution sampling for plutonium needs to be expanded to include more sample sites between the complex boundary and outflow areas. Less emphasis should be directed at soil sampling on the north, east, and south boundaries since significant contamination has never been measured at these locations. All future measurements should be reported in units that can be compared directly with the USEPA proposed "screening level" for transurances, i.e., 0.2 µCi/m².
- 2. Water sampling at the seven sites on the BOMARC complex and Lakehurst Naval Air Station, as well as the ten off-site locations added

during the 1985 survey should be performed annually to detect the impact of the plutonium, if any, on the groundwater. The sampling of potable water from the residences adjacent to the Fort Dix boundary should be offered annually on a courtesy basis. Furthermore, it has been recommended that six additional shallow wells be installed into the Cohansey sand under the Air Force's Installation Restoration Program (IRP). These added surveillance wells will be useful in establishing water table depths, vertical and horizontal flow directions, and as providing additional plutonium monitoring sites around the BOMARC complex.

- 3. Instrument (FIDLER) surveys should continue on an annual basis, but be limited to the missile shelter grounds which are surrounded by concertina wire. The MDAD of the FIDLER is too high to permit comparison of the plutonium areal densities in most areas with the USEPA screening level for transurances of $0.2~\mu\text{Ci/m}^2$.
- E. The BOMARC complex should be visually inspected quarterly by the McGuire AFB Radiation Protection Officer and Environmental Coordinator to ascertain the site's condition and to identify any potential loss of containment. Particular attention should be given to the expansion joints in the concrete containment slab and concertina wire fence. The expansion joints should remain sealed and free of vegetation. Civil Engineering should be contacted to repair any loss of integrity in either the concertina fence or site boundaries.

REFERENCES

- 1. USAF RHL Operations Plan "WATCH-DOG PLUTO," 12 September 1973.
- 2. United States Government Federal Register, Volume 42, No. 230, Wednesday, 30 November 1977.
- 3. USAFOEHL Report 85-151RZ121JRD, "Results of Radiological Surveys 1975-1984 at Fort Dix BOMARC Site NJ", August 1985.
- 4. USAFOEHL Letter to HQ MAC/SGPB, Subject: Evaluation of Plutonium Contamination on Groundwater, BOMARC Site, Fort Dix NJ, 31 October 1985.
- 5. USAFOEHL Letter to HQ MAC/SGPB, Subject: Aerial Dispersion of Plutonium at BOMARC Site, Fort Dix NJ, 22 November 1985.
- 6. Chu, N.Y., "Plutonium Determination in Soil by Leaching and Ion Exchange Separation," Anal. Chem 43:449 (1971).
- 7. Sheehan, W.E., et al: <u>Urinalysis for Metabolized Plutonium</u>, published in Proceedings of the Ninth Annual Conference on Bioassay and Analytical Chemistry, San Diego, California, Oct 10-11, 1963.
- 8. Henley, L.C.: <u>Urinalysis by Ion Exchange</u>, Eleventh Annual Bio-Assay and Analytical Chemistry Conference, Albuquerque, New Mexico, Oct 7-8, 1965.
- 9. Homann, S.G., "Hot Spot Health Physics Codes," Lawrence Livermore National Laboratory, LLL Publication M-161, April 1985.

FIGURE 2 FIDLER Intensive Grid, Concrete Apron

Soil Concentrations (µCi/m²) Pu 239,240 1985 Figure 5.

16

239,240

FIGURE 8 1985 Government Well Sampling Sites

Plutonium Soil Distribution Site 107

Figure 9: Vertical Pu-239 Soil Distribution, Site 107

Plutonium Soil Distribution Site 1974

Figure 10: Vertical Pu-239 Soil Distribution, Site 107A

Plutonium Soil Distribution Site K067i

Figure 11: Vertical Pu-239 Soil Distribution, Site KQ671

Plutonium Soil Distribution Bunker

Figure 12: Vertical Pu-239 Soil Distribution, Bunker

Scale 1 50 600

1985	BOMA	RC IN	TENSE GRID	21-APR-86	15:35:16	PAG
 COL	ROW	KIT	DATE	MINIMUM DETECTABLE [MDAD]	60 KEV LEVEL UCI/M2	ERROR PER CE
ААААААААААААААААААААААААААААААААААААА	12468024579023456756712468024582222233333333333	22222222222222222222222222222222222222	19191919191919191919191919191919191919	1.738 1.4505 1.4505 1.4505 1.4505 1.4505 1.4505 1.4505 1.4505 1.4505 1.4505 1.4505 1.5	1.892	43.18

1985	BOMA	RC IN	TENSE GRID	21-APR-86		PAG
COL	ROW	KIT	DATE	MINIMUM DETECTABLE [MDAD]	60 KEV LEVEL UCI/M2	ERROR PER CE
88 88000000000000000000000000000000000	33 124 68024680245790234567567567124680246802457902333333333333333333333333333333333333	112222222222222222222222222222221111111	19-85 19	0.152 1.22997	4.003 4.003 1.456 3.518	37.04 37.04 55.73 35.93

🊂 1985 BOW	ARC INTENSE	GRID	21-APR-86 1	L5:35:16	PAG
COL ROW	KIT DA	DETECT [MI	60 1UM LE FABLE UC DAD]	KEV EVEL I/M2 F	ERROR PER CEI
275567126048045903345671256791357802457902333355679357915792 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD	111111111111111111111111111111111111111	EP-85 EP	778 024 503 024 100 535 100 535 100 536 1205 100 1398 1271 100 104	862 1 282 1	28.51 27.75 4.32
G 13 G 15 G 17 G 19 G 22	1 19-St 1 19-St 1 19-St	P-85 1.8 P-85 1.2 P-85 1.1 P-85 1.1 P-85 0.6 P-85 0.6	63 7. 05 00 00 96 03	230 2	28.51

1985	BOMA	RC IN	TENSE GRID	21-AP	R-86	15:35:16	PAG
COL	ROW	KIT	DATE	MINIMUM DETECTABLE [MDAD]		60 KEV LEVEL UCI/M2	ERROR PER CEI
GGGG	24 27 29	1 1 1	19-SEP-85 19-SEP-85 19-SEP-85 19-SEP-85	1.205 0.942 2.541		.97.750	3,30
G	3 <u>1</u> 33 34	† 1	19-SEP-85 19-SEP-85 19-SEP-85	1.906	121	.80.122	14.32
GGGGGGGGTTITITITITITITITITITITITITI	279134567123579135792479134567123571359349134567		255 255 255 255 255 255 255 255 255 255	1.100 1.000 1.000	18	3.154	70.58
Ī I	29 31 33	1 1 1	19-SEP-85 19-SEP-85 19-SEP-85	0.778 0.898 1.004		0.971	60.39
	34 35 36 37 12		19-SEP-85 19-SEP-85 19-SEP-85 19-SEP-85 19-SEP-85 19-SEP-85	1.100 2.841 1.136 1.004 1.136 0.984	112	215.031	32.32

1985	5 BOMA	RC IN	ITENSE GRID	21-APR-86		PAGE
COL	ROW	KIT	DATE	MINIMUM DETECTABLE [MDAD]	60 KEV LEVEL UCI/M2	ERROR PER CEN
メメメメメメメメン	35713593491345671259379348912 11122223333333		19-SEP-85 19-SEP-85 19-SEP-85 19-SEP-85 19-SEP-85 19-SEP-85 19-SEP-85 19-SEP-85 19-SEP-85 19-SEP-85 19-SEP-85 19-SEP-85 19-SEP-85	0.942 1.238 0.984 1.238 1.100 1.556 1.100 1.100 0.898 1.278 1.556 1.333 0.898 1.2756 1.333 0.778 1.556 1.171 1.205 1.1797 1.797 1.797 1.797 1.797 1.797 1.136 0.835	2.038	72.02
XXXCL	36 37 1 2	1 1 1	19-SEP-85 19-SEP-85 19-SEP-85 19-SEP-85 19-SEP-85 19-SEP-85	1.392 1.333 0.898 0.778 1.556	3.445 2.912	32.94 50.64
Κ̈ K	9 13	1	10 CED 05	1,136 1,171	1.213	73.78
***************************************	19348912597938934567123579135 11222233353	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	19-SEP-85 19-SEP-85	1.205 1.476 1.797 1.799 1.803 1.803 1.803 1.803 1.803 1.803 1.803 1.333	1.747 3.882 3.882 4.853	76.29 499.4 499.4 769.4

19	985	BOMA	RC IN	TENSE GRID		21-	-APR-86	15:35:3	L 6	PAGE
C	DL 	ROW	KIT	DATE	MII DETI	NIMUM ECTABL [MDAD]	E	60 KEV LEVEL UCI/M2	PE	RROR R CEN
TETETETETETETETETETETETETETETETETETETE	711111111111111111111111111111111111111	19134689134567123579135791346891345675675675675675675		19-85 19-85		842262228218122002858022333282400088209356404055500146886				

1985	BOMA	RC IN	TENSE GRID	21-APR-86	15:35:16	PAGE
COL	ROW	KIT	DATE	MINIMUM DETECTABLE [MDAD]	60 KEV LEVEL UCI/M2	ERROR PER CENT
SSTTTUUUVVVWWWXXXYYYZZZ	37567567567567567567567567		19-SEP-85 19-SEP-85 19-SEP-85 19-SEP-85 19-SEP-85 19-SEP-85 19-SEP-85 19-SEP-85 19-SEP-85 19-SEP-85 19-SEP-85 19-SEP-85 19-SEP-85 19-SEP-85 19-SEP-85	1.271 1.363 1.136 1.238 1.333 1.100 1.238 1.063 1.063 1.171 1.063 1.063 1.063 1.063 1.063		

TABLE 2: Gross Alpha and Pu-239 Concentrations in Residential Well Waters (1985)

NJDEP Number	USAFOEHL Number	Sampled Residence	Concentration Gross Alpha	(pCi/liter) Pu-239
к0330	1 8501 224	Taylor	< 1.0	< 0.02
K0331	18501211	Montervino	< 1.0	< 0.02
К0332	1 8501 21 6	Lawrence	< 1.0	< 0.01
К0333	1 8501 228	Wallin	< 1.0	< 0.01
K0334	1 8501 226	Larsen	< 1.0	< 0.01
К0336	1 8501 215	Leto < 1.0	< 0.02	
К0337	1 8501 21 3	Cadenhead	< 1.0	< 0.01

Table 3: Gross Alpha and Pu-239 Water Concentrations in Off-Site Sampling Locations

Site* Number	USAFOEHL Number	Site Description	Concentration (pCi/liter)** Gross Alpha Pu-239
1	1 8501 21 9	Collier's Mill Pond	< 0.4 < 0.02
2	18501218	Success Lake, North	< 0.5 < 0.01
3	18501210	Success Lake, South	1.6 ± 0.8 < 0.01
5	18501212	Bivouac Site #20 Tap Water, Ft Dix	1.1 ± 0.6 < 0.02
6	18501227	Bivouac Site #18 Tap Water, Ft Dix	1.2 ± 0.6 < 0.01
10	1 8501 21 4	Hanover Lake	0.8 ± 0.6 < 0.02
11	18501220	Range Control Tap Water	< 0.6 < 0.02
12	1 8501 221	Mirror-Big Pine Lakes	0.6 ± 0.6 < 0.01
13	18501217	Country Lake	< 0.6 < 0.01
14	18501222	Hwy 70, Lebanon Lake	0.8 ± 0.6 < 0.01
15	1 8501 225	Hwy 70, Marker 33	0.8 ± 0.6 < 0.02

^{*}Reference Figure 7 for locations on area map.

^{**}Result ± 2 standard deviations for the measurement.

TABLE 4: Soil Radionuclide Concentrations for Off-Site Sampling Locations

Site* Number	USAFOEHL Number	Site Description	Radio- Nuclide	Concentration (pCi/dry gram)**
4	18501280	Bivouac Site 22	Pu-239 Am-241 U-238 U-235 Cs-137	0.013 ± 0.002 < 0.02 0.29 ± 0.20 < 0.03 0.19 ± 0.01
5	18501279	Bivouac Site 20	Pu-239 Am-241 U-238 U-235 Cs-137	0.03 ± 0.01 < 0.02 0.20 ± 0.17 < 0.03 0.12 ± 0.01
6	18501278	Bivouac Site 18	Pu-239 Am-241 U-238 U-235 Cs-137	0.013 ± 0.004 0.03 ± 0.03 0.34 ± 0.21 < 0.03 0.31 ± 0.01
7	18501230	Hwy 70 & Rt 539	Pu-239 Am-241 U-238 U-235 Cs-137	<pre></pre>
8	18501235	Bivouac Site 13	Pu-239 Am-241 U-238 U-235 Cs-137	0.020 ± 0.005 < 0.02 0.40 ± 0.20 0.04 ± 0.03 0.107 ± 0.006
9	1 8501 237	Bivouac Site 13A	Pu-239 Am-241 U-238 U-235 Ca-137	0.010 ± 0.005 < 0.01 0.30 ± 0.20 < 0.03 0.158 ± 0.007
11	18501232	Range Control	Pu-239 Am-241 U-238 U-235 Ca-137	0.90 ± 0.04 < 0.03 0.04 ± 0.04 0.29 ± 0.01

Site* Number	USAFOEHL Number	Site Description	Radio- Nuclide	Concentration (pCi/dry gram)**
12	18501236	Mirror-Big Pine Lake Frontage	Pu-239 Am-241 U-238 U-235 Cs-137	< 0.002 < 0.02 0.60 ± 0.20 0.235 ± 0.03 0.27 ± 0.01
13	18501233	Country Lake Frontage	Pu-239 Am-241 U-238 U-235 Cs-137	0.045 ± 0.008 < 0.02 0.30 ± 0.20 < 0.03 0.184 ± 0.007
14	18501234	Hwy 70, Lebanon Lake Frontage	Pu-239 Am-241 U-238 U-235 Cs-137	< 0.03 < 0.02 0.30 ± 0.20 0.03 0.122 ± 0.006
15	18501229	Hwy 70 & Mile Marker 33	Pu-239 Am-241 U-238 U-235 Cs-137	0.023 ± 0.007 < 0.02 0.53 ± 0.01

^{*}Reference Figure 7 for site map locations

^{**}Result \pm 2 standard deviations for the measurement, results for Pu-239 in units of pCi per gram ashed

TABLE 5: Gross Alpha and Pu-239 Concentrations in Government Owned Wells - 1985

			Resul	t**
Sample*	Sampling	Depth of	Gross Alpha	Pu-239
Number	Description	Well (ft)	(pCi/l)	(pCi/l)
SP001	Naval Propulsion Lab	52	1.0 ± 1.0	< 0.01
SP002	Fire Pond 12, Elisha Branch, Lakehurst NAS	Surface	0.3 ± 0.3	< 0.03
SP003	Bivouac Site 18, Ft Dix	103	1.0 ± 1.0	< 0.03
SP004	Bivouac Site 20, Ft Dix	118	< 1.0	< 0.02
SP005	National Guard UTES Sit	e 87	< 1.0	< 0.03
SP006	Bivouac Site 22a, Ft Di	x 125	< 1.0	< 0.03
SP007	BOMARC Site, Well No. 2	100	< 1.0	< 0.01
MW-17	IRP Phase I Monitoring	UNK	1.4 ± 0.7	< 0.01

^{*}Reference Figure 8 for map sampling locations

^{**}Result ± standard deviations for measurement

-- TABLE 6: Soil Pu-239 Vertical Distributions

Soil Pu-239 Concentration

Soil Depth (inches)	Bunker (nCi/g)	K0671 (pCi/g)	Site 107 (pCi/g)	Site 107A (pCi/g)
Surface	96.6 ± 1.9	0.014 ± 0.002	0.32 ± 0.03	41.9 ± 4.0
1.0	no sample	0.011 ± 0.002	0.24 ± 0.04	40.2 ± 4.1
2.0	116.1 ± 1.5	0.012 ± 0.002	0.31 ± 0.04	no sample
3.0	38.3 ± 0.9	0.07 ± 0.01	0.20 ± 0.03	12.2 ± 1.1
4.0	3.6 ± 0.4	0.03 ± 0.01	0.23 ± 0.03	0.93 ± 0.03
5.0	27.8 ± 2.2	0.08 ± 0.02	0.05 ± 0.01	0.62 ± 0.04
6.0	3.8 ± 3.3	0.07 ± 0.02	0.14 ± 0.01	0.15 ± 0.01
7.0	0.344 ± 0.016	ó* no sample	no sample	0.15 ± 0.01
8.0	0.222 ± 0.001	* no sample	no sample	no sample
9.0	0.063 ± 0.002	?* no sample	no sample	no sample
10.0	0.024 ± 0.002	2* no sample	no sample	no sample
11.0	0.011 ± 0.002	2* no sample	no sample	no sample
12.0	0.006 ± 0.001	0.13 ± 0.02	0.035 ± 0.002	0.102 ± 0.003
24.0	0.40 ± 0.04	0.02 ± 0.01	0.55 ± 0.02	0.017 ± 0.002

^{*}Pu-239 estimated from Am-241, others measured directly

TABLE 7: 1985 Soil Sample Radionuclide Concentrations for BOMARC Site Sampling Points

Site* Number	US AFOEHL Number	Radio- Nuclide	Concentration (pCi/dry gram)**
100	1 8501 291	Pu-239 Am-241 U-238 U-235 Cs-137	0.024 ± 0.006 < 0.02 0.4 ± 0.2 < 0.03 0.39 ± 0.01
101	18501292	Pu-239 Am-241 U-238 U-235 Cs-137	0.03 ± 0.01 < 0.03 0.8 ± 0.4 0.09 ± 0.05 0.21 ± 0.01
102	1 8501 293	Pu-239 Am-241 U-238 U-235 Cs-137	0.028 ± 0.009 < 0.02 0.5 ± 0.3 0.04 ± 0.04 0.229 ± 0.009
103	18501294	Pu-239 Am-241 U-238 U-235 Cs-137	0.047 ± 0.026 < 0.02 0.7 ± 0.3 0.07 ± 0.04 0.24 ± 0.01
104	18501295	Pu-329 Am-241 U-238 U-235 Cs-137	0.03 ± 0.02 < 0.02 0.66 ± 0.26 0.033 ± 0.032 0.183 ± 0.008
105	18501296	Pu-239 Am-241 Cs-137	0.09 ± 0.02 < 0.02 0.262 ± 0.008
106	185012 97	Pu-239 Am-241 U-238 U-235 Cs-137	0.09 ± 0.02 < 0.02 0.28 ± 0.22 0.034 ± 0.025 0.179 ± 0.007
107	18501298	Pu-239 Am-241 U-238 C9-137	2.1 ± 0.3 0.22 ± 0.02 0.033 ± 0.025 0.269 ± 0.008

Site* Number	USAFOEHL Number	Radio- Nuclide	Concentration (pCi/dry gram)**
108	18510299	Pu-239 Am-241 U-238 U-235 Cs-137	0.06 ± 0.01 < 0.02 0.33 ± 0.22 0.034 ± 0.032 0.196 ± 0.008
109	1 851 0300	Pu-239 Am-241 U-238 Cs-137	1.9 ± 0.2 0.09 ± 0.02 0.24 ± 0.20 0.229 ± 0.007
110	1 851 0301	Pu-239 Am-241 U-238 U-235 Cs-137	0.46 ± 0.07 0.08 ± 0.03 0.26 ± 0.19 0.036 ± 0.028 0.170 ± 0.007
111	18510302	Pu-239 Am-241 U-238 Cs-137	0.014 ± 0.007 < 0.03 0.5 ± 0.3 0.209 ± 0.008
112	1 851 0303	Pu-239 Am-241 U-238 U-235 Cs-137	0.016 ± 0.008 < 0.03 0.38 ± 0.29 0.05 ± 0.04 0.213 ± 0.009
113	1 851 0304	Pu-239 Am-241 U-238 Cs-137	0.025 ± 0.009 < 0.03 0.5 ± 0.3 0.236 ± 0.009
114	1 851 0305	Pu-239 Am-241 U-238 Cs-137	< 0.003 < 0.03 0.5 ± 0.3 0.114 ± 0.007
115	1 851 0306	Pu-239 Am-241 U-238 Ca-137	0.13 ± 0.07 < 0.03 0.27 ± 0.23 0.213 ± 0.008
116	1 851 030 7	Pu-239 Am-241 Cs-137	0.28 ± 0.05 < 0.02 0.229 ± 0.009
117	1 951 0308	Pu-239 Am-241 Cs-137	0.19 ± 0.03 < 0.02 0.174 ± 0.007

Site* Number	US AFOEHL Number	Radio- Nuclide	Concentration (pCi/dry gram)**
118	18510309	Pu-239 Am-241 U-235 Cs-137	0.90 ± 0.09 0.08 ± 0.03 0.03 ± 0.03 0.227 ± 0.008
119	18510310	Pu-239 Am-241 U-235 Cs-137	0.015 ± 0.008 < 0.02 0.032 ± 0.029 0.108 ± 0.006
120	18510311	Pu-239 Am-241 Cs-137	0.03 ± 0.01 < 0.02 0.252 ± 0.009
121	18501312	Pu-239 Am-241 Cs-137	0.17 ± 0.03 < 0.02 0.42 ± 0.01
122	18501313	Pu-239 Am-241 U-238 Cs-137	0.05 ± 0.02 < 0.03 0.5 ± 0.3 0.25 ± 0.01
123	18501314	Pu-239 Am-214 U-238 Cs-137	0.02 ± 0.01 < 0.03 0.4 ± 0.3 0.246 ± 0.009
124	18501315	Pu-239 Am-241 Cs-137	0.011 ± 0.007 < 0.02 0.128 ± 0.006
125	18501316	Pu-239 Am-241 Cs-137	0.02 ± 0.01 < 0.03 0.132 ± 0.007
126	18501317	Pu-239 Am-241 U-235 Cs-137	0.07 ± 0.02 < 0.02 0.04 ± 0.03 0.30 ± 0.01
127	18501318	Pu-239 Am-241 U-235 U-238 Cs-137	0.04 ± 0.01 < 0.02 0.04 ± 0.03 0.5 ± 0.2 0.189 ± 0.008

128	18501319	Pu-239 Am-241 U-238 Cs-137	0.007 ± 0.006 < 0.02 0.3 ± 0.2 0.073 ± 0.005
129	18501320	Pu-239 Am-241 Cs-137	0.009 ± 0.007 < 0.02 0.073 ± 0.006
130	18501321	Pu-239 Am-241 U-235 U-238 Cs-137	0.02 ± 0.01 < 0.02 0.03 ± 0.03 0.22 ± 0.14 0.073 ± 0.005
1 31	18501322	Pu-239 Am-241 Cs-137	0.020 ± 0.007 < 0.02 0.165 ± 0.007
1 32 ⁻	1 8501 323	Pu-239 Am-241 U-238 Cs-137	0.018 ± 0.007 < 0.02 0.3 ± 0.02 0.208 ± 0.007
1 33	1 8501 324	Pu-239 Am-241 U-238 Cs-137	0.016 ± 0.008 < 0.02 0.19 ± 0.17 0.115 ± 0.006
134	1 8501 325	Pu-239 Am-241 U-238 Cs-137	0.011 ± 0.006 < 0.02 0.6 ± 0.3 0.251 ± 0.009
1 35	1 850 <u>1</u> 326	Pu-239 Am-241 U-238 Cs-137	0.007 ± 0.004 < 0.02 0.6 ± 0.3 0.189 ± 0.008
136	1 8501 327	Pu-239 Am-241 U-235 U-238 Ca-137	0.03 ± 0.02 < 0.02 0.04 ± 0.04 0.5 ± 0.3 0.280 ± 0.009
137	18501328	Pu-239 Am-241 U-238 Ca-137	0.028 ± 0.006 < 0.03 0.5 ± 0.2 0.215 ± 0.008
138	1 8501 329	Pu-239 Am-241 U-238 Cs-137	0.06 ± 0.01 < 0.02 0.20 ± 0.18 0.190 ± 0.007

139	18501330	Pu-239	0.006 ± 0.004
	•	Am-241	< 0.02
		U-238·	0.3 ± 0.2
		Cs-137	0.072 ± 0.005
140	1 8501 331	Pu-239	0.005 ± 0.003
		Am→241 U-235	< 0.02
		U-238	0.03 ± 0.03 0.32 ± 0.26
		Cs-137	0.081 ± 0.006
1 41	1 8501 332	Pu-239	< 0.002
	•	Am-241	< 0.02
		U-238	0.4 ± 0.2
		Cs-137	0.087 ± 0.006
1 42	1 8501 333	Pu-239	0.009 ± 0.007
		Am-241 U-235	< 0.02 0.03 ± 0.03
		U-238	0.03 ± 0.03 0.37 ± 0.23
		Cs-137	0.109 ± 0.006
143	18501334	Pu-239	0.005 ± 0.004
		Am-241	< 0.02
		U-238	0.24 ± 0.21
		Cs-137	0.250 ± 0.009
144	1 8501 335	Pu-239	0.008 ± 0.005
		Am-241	< 0.02
		U-235 U-238	0.05 ± 0.04 0.45 ± 0.29
		Cs-137	0.219 ± 0.009
145	1 8501 336	Pu~239	0.016 ± 0.005
		Am-241	< 0.03
		U~238	0.5 ± 0.3
		C9-137	0.202 ± 0.008
146	1 8501 337	Pu-239	0.010 ± 0.005
		Am-241 U-235	< 0.02
		U-238	0.03 ± 0.03 0.5 ± 0.3
		Cs-137	0.204 ± 0.008
147	18501338	Pu-239	< 0.003
		Am-241	< 0.02
		U-235	0.05 ± 0.03
		U-238 Cs-137	0.5 ± 0.3 0.141 ± 0.008
148	1 8501 339	Pu-239	0.021 ± 0.009
		Am-241 U-238	< 0.02 0.4 ± 0.3
		Cs-137	0.203 ± 0.008
			= ' ' '

149	18501340		
	10501340	Pu-239	< 0.01
		Am-241	< 0:03
		U-238·	0.3 ± 0.2
		Cs-137	0.182 ± 0.008
150	1 8501 341	Pu-239	0.034 ± 0.010
		Am-241	< 0.03
		U-238	0.4 ± 0.3
		Cs-137	0.276 ± 0.009
151	18501342	Pu-239	0.015 1.0.000
•		Am-241	0.015 ± 0.008
		U-238	< 0.03 0.4 ± 0.2
		Cs-137	0.4 ± 0.2 0.167 ± 0.008
152	1 9501 212		•
	18501343	Pu-239	0.017 ± 0.006
		Am-241	< 0.03
		U-238	0.21 ± 0.20
		Cs-137	0.196 ± 0.008
153	1 8501 344	Pu-239	0.016 ± 0.010
		Am-241	< 0:02
		U−238°	0.26 ± 0.21
		Cs-137	0.182 ± 0.008
154	1 8501 345	Pu-239	0.013 + 0.007
		Am-241	0.012 ± 0.007
		Cs-137	< 0.02 0.205 ± 0.008
155	1 8501 346	D., 220	
. 55	10001340	Pu-239	< 0.03
		Am-241	< 0.02
		U-238	0.5 ± 0.2
		Cs-137	0.158 ± 0.008
156	1 8501 347	Pu~239	0.019 ± 0.010
	·	Am-241	< 0.01
		U-238	0.2 ± 0.2
		Cs-137	0.068 ± 0.005
157	1 8501 348	Pu-239	0.20 ± 0.03
		Am~241	< 0.01
		Cs-137	0.012 ± 0.003
158	1 8501 349	Pu-239	0.011
		Am-241	0.04 ± 0.01
	•	U-238	< 0.02
		C9-137	0.2 ± 0.2 0.116 ± 0.006
150	10001501	_	01110 X 01000
159	1 8501 350	Pu-239	0.016 ± 0.006
		Am-241	< 0.02
		U-235	0.05 ± 0.04
		U-238	0.46 ± 0.28
		C9-137	0.221 ± 0.008

1 60	1 8501 351	Pu-239	0.08 ± 0.02
		Am-241	< 0.02
		U-238	0.29 ± 0.20
		Cs-137	0.166 ± 0.007
		00 157	0.100 ± 0.007
161	1 8501 352	Pu-239	0.010 ± 0.005
	• •	Am-241	< 0:02
		Ŭ − 238 ·	0.3 ± 0.2
		Cs-137	0.131 ± 0.006
162	1 8501 353	Pu-239	0.02 ± 0.01
	•	Am-241	< 0.02
		U - 238	0.44 ± 0.27
		Cs-137	0.199 ± 0.008
163	1 8501 354	D., 220	
103	10001354	Pu-239	< 0.01
		Am-241	< 0.03
		U-238	0.4 ± 0.3
		Cs-137	0.193 ± 0.008
164	1 8501 355	Pu-239	0.76 ± 0.08
		Am-241	0.07 ± 0.03
		U-235	0.05 ± 0.03
		U-238	0:25 ± 0:22
		Cs-137	0.29 ± 0.01
165	4.0774.776		•
165	1 8501 356	Pu-239	0.63 ± 0.08
		Am-241	0.15 ± 0.03
		U-235	0.05 ± 0.03
		U-238	0.28 ± 0.24
		Cs-137	0.251 ± 0.009
166	1 8501 357	Pu-239	0.93 ± 0.09
		Am-241	0.07 ± 0.03
		Cs-137	0.169 ± 0.008
. 4		•	
167	1 8501 358	Pu-239	4.9 ± 0.5
		Am-241	0.58 ± 0.04
		U-538	0.23 ± 0.18
		Cs-137	0.189 ± 0.008
168	1 8501 359	מבייים	0.06
, 00	10001309	Pu-239 Am-241	0.06 ± 0.01
		U-238	0.023 ± 0.019
		_	0.22 ± 0.14
	•	C9-137	0.228 ± 0.007
169	1 8501 360	Pu-239	0.16 ± 0.03
		Am-241	< 0.02
		Cs-137	0.179 ± 0.007
170	ተ ወሮስቱ ግርቱ	B. 434	A A.m
110	1 8501 361	Pu-239	0.017 ± 0.008
		Am-241	< 0.02
		U-235	0.041 ± 0.035
		U-238 Ca-137	0.45 ± 0.25
		Cs-137	0.196 ± 0.008

171	18501362	Pu-239 Am-241 Cs-137	0.016 ± 0.009 < 0.03 0.317 ± 0.010
172	1 8501 363	Pu-239 Ат-241	45.8 ± 3.5 < 0.74
173	1 8501 364	Pu-239 Am-241 U-235 U-238 Cs-137	10.8 ± 1.1 1.5 ± 0.04 0.07 ± 0.04 0.19 ± 0.17 0.183 ± 0.009
174	18501365	Pu-239 Am-241 U-238 Cs-137	0.90 ± 0.09 0.07 ± 0.02 0.25 ± 0.15 0.172 ± 0.007
1 75	1 8501 366	Pu-239 Am-241 U-235 Cs-137	0.12 ± 0.02 < 0.01 0.03 ± 0.02 0.149 ± 0.006
176	1 8501 367	Pu-239 Am-241 Cs-137	0.05 ± 0.01 < 0.01 0.118 ± 0.006
177	1 8501 368	Pu-239 Am-241 Cs-137	0.05 ± 0.01 < 0.02 0.191 ± 0.008
178	1 8501 369	Pu-239 Am-241 U-238 Cs-137	0.12 ± 0.02 < 0.02 0.21 ± 0.20 0.195 ± 0.008
179	1 8501 370	Pu-239 Am-241 U-238 Cs-137	0.019 ± 0.008 < 0.02 0.3 ± 0.2 0.196 ± 0.007
186	18501371	Pu-239 Am-241 U-235 Ca-137	< 0.084 0.023 ± 0.022 0.04 ± 0.03 0.254 ± 0.009
181	18501372	Pu-239 Am-241 U-235 U-238 Cs-137	8.9 ± 0.6 0.82 ± 0.05 0.04 ± 0.04 0.43 ± 0.27 0.163 ± 0.008

182	18501373	Pu-239 Am-241	0.23 ± 0.03 < 0.02
	•	U-238 Cs-137	$\begin{array}{cccc} 0.21 & \pm & 0.20 \\ 0.157 & \pm & 0.007 \end{array}$
183	18501374	Pu-239 Am-241	0.03 ± 0.02 < 0.02
		U-238 Cs-137	$\begin{array}{cccc} 0.3 & \pm & 0.2 \\ 0.173 & \pm & 0.007 \end{array}$
184	18501375	Pu-239 Am-241	0.04 ± 0.01 < 0.03
		U-238 [.] Cs-137	$\begin{array}{cccc} 0.31 & \pm & 0.27 \\ 0.187 & \pm & 0.008 \end{array}$
1 85	18501376	Pu-239 Am-241	0.02 ± 0.01 < 0.02
		U-238 Cs-137	0.24 ± 0.22 0.195 ± 0.008
1 86	18501377	Pu-239 Am-241	0.06 ± 0.02 < 0.02
		Cs-137	0.236 ± 0.008
1 87	18501378	Pu-239 Am-241	0.05 ± 0.01 < 0.02
		Cs-137	0.156 ± 0.007
188	18501379	Pu-239 Am-241	0.04 ± 0.02 < 0.02
		U-235	0.068 ± 0.032
		U-238 Cs - 137	$\begin{array}{cccc} 0.40 & \pm & 0.19 \\ 0.159 & \pm & 0.008 \end{array}$
189	18501380	Pu-239 Am-241	0.016 ± 0.009
		U~238	< 0.02 0.49 ± 0.30
		Cs-137	0.209 ± 0.008
190	1 8501 381	Pu~239 Am~241	0.006 ± 0.003 < 0.02
		U-235	0.04 ± 0.03
		U-238 Cs-137	0.35 ± 0.25 0.102 ± 0.006
1 91	18501382		
1 21	10201302	Pu-239 Am-241	0.014 ± 0.006 < 0.03
		U-238	0.6 ± 0.3
		Ca-137	0.23 ± 0.01

192	18501383	Pu-239 Am-241 U-235 U-238 Cs-137	0.011 ± 0.005 < 0.02 0.032 ± 0.029 0.27 ± 0.21 0.227 ± 0.008
193	1 8501 384	Pu-239 Am-241 U-238 Cs-137	0.049 ± 0.005 < 0.02 0.41 ± 0.24 0.186 ± 0.007
194	1 8501 385	Pu-239 Am-241 U-235 U-238 Cs-137	0.015 ± 0.006 < 0.02 0.047 ± 0.035 0.52 ± 0.25 0.174 ± 0.008
195	1 8501 386	Pu-239 Am-241 U-235 U-238 Cs-137	0.014 ± 0.005 < 0.02 0.05 ± 0.03 0.29 ± 0.21 0.224 ± 0.008

^{*}Pu-239 in units of activity per gram of soil ashed.

TABLE 8: Aerial Dispersion Modeling Results

Pasquill Stability Class	Wind Velocity (m/s)	Release Height (meters)	Predicted Downwind Touchdown Point of Plume (meters)
A	3.1	122	500
С	3.1	122	1000
A	1.2	15	10
С	1.2	15	100

APPENDIX A
SOIL RESULTS (1975-1985)

Soil Sample Results - Pu 239,240

Site	Year	pCi/gm	$\mu \text{Ci/m}^2$		Site	Year	pCi/gm	μCi/m²
100	1975 1976 1978 1981 1982 1983 1984	<.02	<.004		101	1975 1976 1978 1981 1982 1983 1984	<.02 <.05 .01 .013 .20 .03 .024	<.004 <.03 .003 .003 .031 .004
	1 985	.024	.005			1 985	.03	.007
102	1975 1976 1978 1981 1982 1983 1984	<.02 <.05	<.004 <.03		103	1975 1976 1978 1981 1982 1983 1984	.04 <.05 .01 .029	.009 <.03 .002 .006
	1 985	.028	.005			1985	.047	.011
104	1975 1976 1978 1981 1982 1983	<.02 <.05	<.004 <.03		105	1975 1976 1978 1981 1982 1983 1984	<.02 <.05	<.004 <.03
	1985	.03	.008	. `		1 985	.09	, 01 9
106	1 975 1 976 1 978 1 981 1 982 1 983 1 984 1 985	.02	<.004 <.03		107	1975 1976 1978 1981 1982 1983 1984 1985	<.02 5.6 .72 .13 4.2 1.5 .33 2.1	<.004 1.33 .243 .043 1.00 .34 .079 .548
108	1975 1976 1978 1981 1982 1983 1984 1985	2.16 2.8 .015 .22 1.0 .40	.463 .69 .004 .064 .251 .087		109	1975 1976 1978 1981 1982 1983 1984 1985	.43 1.1 1.34 .91 2.1 .52 1.9	.134 .33 .43 .215 .605 .106 .47

Site	<u>Year</u>	pCi/gm	μCi/m²	Site	Year	pCi/gm	$\mu \text{Ci/m}^2$
110	1 975 1 976 1 978 1 981 1 982 1 983 1 984 1 985	.44 .43 1.44 .11 .65 .45 2.0	.137 .13 .421 .035 .186 .095 .455	111	1975 1976 1978 1981 1982 1983 1984 1985	.02	.006
112	1975 1976 1978 1981 1982 1983 1984	<.02 <.05 .06 .017 .05 .080 .015	<.007 <.03 .043 .005 .014 .017 .003 .004	113	1975 1976 1978 1981 1982 1983 1984 1985	<.02 <.05	<.006 <.03
114	1975 1976 1978 1981 1982 1983 1984	.04 <.05 .04 .017 .32 .03 .50 <.003	.009 <.03 .010 .005 .080 .006 .079 <.001	115	1975 1976 1978 1981 1982 1983 1984 1985	<.02 <.05 .04 .048 .22 .018 .080	<.006 <.03 .010 .012 .047 .004 .016 .033
116	1975 1976 1978 1981 1982 1983 1984 1985	.66 1.73 12.3 3.92 .08 .060 .35	.188 .49 3.41 1.03 .020 .013 .081	117	1975 1976 1978 1981 1982 1983 1984 1985	.19 .12 .050	.059 .035 .017
118	1975 1976 1978 1981 1982 1983 1984 1985	.62 .51 .54 .59 .50 2.5 .83	.179 .160 .166 .164 .148 .592 .189	119	1975 1976 1978 1981 1982 1983 1984 1985	<.02 <.05	<.005 .03</td
120	1975 1976 1978 1981 1982 1983 1984	<.02 <.05	<.006 <.03	121	1 975 1 976 1 978 1 981 1 982 1 983 1 984	<.02 <.05	<.005 <.03
	1 985	.03	.008		1 985	.17	.040

Site	Year	pCi/gm	<u>μCi/m²</u>	Site	Year	pCi/gm	μCi/m²
122	1975 1976 1978 1981 1982 1983 1984 1985	<.02 <.05	<.006 <.03	123	1975 1976 1978 1981 1982 1983 1984 1985	<.02 <.05 .01 .034 .085 .007 .023	<.007 <.03 .003 .009 .021 .002 .006 .004
124	1975 1976 1978 1981 1982 1983 1984	<.02 <.05	<.006 <.03	125	1975 1976 1978 1981 1982 1983 1984 1985	.69 .49 .05 .56 .87 .080	.199 .13 .013 .16 .264 .018 .138
126	1975 1976 1978 1981 1982 1983 1984 1985	.46 .89 .04 .10 .16 .020 .20	.099 .19 .010 .017 .050 .004 .039	127	1975 1976 1978 1981 1982 1983 1984 1985	.95 .25 1.81 1.2' .98 2.00 1.70	.295 .08 .56 .368 .299 .397 .34
128	1975 1976 1978 1981 1982 1983 1984	.03 <:05 .20 .050 .10 .18 .024 .007	.010 <.03 .070 .014 .031 .038 .005	129	1975 1976 1978 1981 1982 1983 1984 1985	.05	.014
130	1975 1976 1978 1981 1982 1983	<.02 <.05	<.007 <.03	131	1975 1976 1978 1981 1982 1983	<.02 <.05	<.005 <.03
132	1984 1975 1976 1978 1981 1982 1983 1984	.02 <.02 <.05	.005 <.006 <.03	133	1985 1975 1976 1978 1981 1982 1983	.02 <.02 <.05	.004 <.003 <.03
	1985	.018	.004		1985	.016	.003

Site	Year	pCi/gm	μCi/m²	Site	Year	pCi/gm	μCi/m²
134	1975 1976 1978 1981 1982 1983 1984 1985	.04 <.05 .040 .005 .011	.012 <.03 .010 .001 .002	135	1975 1976 1978 1981 1982 1983 1984	<.02 <:05	<.005 <.03
136	1976	<.05	.003		1985	.007	.002
,50	1 978 1 981 1 982 1 983 1 984	.01	004		1978 1981 1982 1983 1984		₹ •03
	1 985	.03	.008		1 985	.028	.007
138	1975 1976 1978 1981 1982 1983 1984	.02 .15 .06 .35 .29 .060	.006 .04 .017 .10 .082 .013	139	1975 1976 1978 1981 1982 1983 1984	<.02 <.05	<.007 <.03
	1 985	.06	.015		1 985	.006	.002
140	1975 1976 1978 1981 1982 1983 1984	.38 <.05 <.01 .15 .03 .010	.119 <.03 <.001 .042 .006 .002	141	1975 1976 1978 1981 1982 1983 1984	<.02 <.05	<.007 <.03
	1 985	.005	.002		1 985	<.002	.001
1 42	1975 1976 1978 1981 1982 1983 1984	<.02 <.05	<.006 <.03	143	1975 1976 1978 1981 1982 1983 1984	<.02 <.05	<.006 <.03
	1 985	.009	.003		1985	.005	.004
144	1975 1976 1978 1981 1982 1983 1984	<.02 <.05 .14 .019 .044 .020	<.005 <.03 .040 .004 .013 .004 .006	145	1975 1976 1978 1981 1982 1983 1984	<.02 <.05	<.006 <.03
	1 985	.008	.002		1985	.016	.004

Site	Year	pCi/gm	μCi/m²	Site	Year	pCi/gm	μCi/m²
146	1975 1976 1978 1981 1982 1983 1984	<.02 <.05	<.006 <.03	147	1975 1976 1978 1981 1982 1983	<.02 <.05	<.006 <.03
	1985	.010	.002		1 984 1 985	<.003	<.001
148	1975 1976 1978 1981 1982 1983 1984	<.02 <.05	<.006 <.03	149	1975 1976 1978 1981 1982 1983	.07 <.05 .02 .020 .11	.020 <.03 .004 .006 .028
	1985	.021	.005		1984 1985	.008 <.01	.001 <.002
150	1975 1976 1978 1981 1982 1983 1984	<.02 <.05	<.005 <.03	151	1975 1976 1978 1981 1982 1983	<.02 <:05	<.005 <.03
	1 985	.034	.009		1 985	.015	.004
152	1975 1976 1978 1981 1982 1983 1984	<.02 <.05 .01 .018 .029 .004 .009	<.006 <.03 .002 .004 .008 .001 .002	153	1975 1976 1978 1981 1982 1983 1984	<.02 <.05	<.006 <.03
154	1975 1976 1978 1981 1982 1983 1984	<.02 <.05	<.006 <.03	155	1975 1976 1978 1981 1982 1983 1984 1985	<.02 <.05 .03 .045 .040 .070 .037 <.03	<.005 <.03 .009 .010 .011 .013 .008 <.007
156	1975 1976 1978 1981 1982 1983	<.02 <.05	<.007 <.03	157	1975 1976 1978 1981 1982	.08 .24 .01	.022 .08 .004
	1985	.019	.005		1 984 1 985	. 20	.03

Site	Year	pCi/gm	μCi/m²	Sit	te <u>Year</u>	pCi/gm	μCi/m²
158	1975 1976 1978 1981 1982 1983 1984 1985	.03 <.05 .01 .008 .12 .009 .018	.007 <.03 .002 .002 .034 .001 .003	159	1975 1976 1978 1981 1982 1983 1984 1985	.36 <.05 .01 .012 .050 .021 .007	.098 <.03 .003 .003 .016 .004 .001
160	1 975 1 976 1 978 1 981 1 982 1 983 1 984 1 985	<.02 <.05 .01 .060 .23	<.006 <.03 .004 .018 .040	161	1975 1976 1978 1981 1982 1983 1984 1985	<.02 <:05	<.006 <.03
162	1 975 1 976 1 978 1 981 1 982 1 983 1 984 1 985	<.02 <.05	<.006 <.03	163		<.02 <.05 .009 .06 .030 .025 <.01	.003 <.007 <.02 .003 .017 .006 .005 <.002
164	1 975 1 976 1 978 1 981 1 982 1 983 1 984 1 985	1.27 .23 8.5 .34 1.47 .60 1.9	.410 .070 2.36 .080 .396 .120 .43	1 65	1975 1976 1978 1981 1982 1983 1984 1985	1.91 3.4 .35	.604 1.1 .098
166	1975 1976 1978 1981 1982 1983 1984	2.36	.796 1.4	167	1976 1978 1981 1982 1983 1984	374. 6.6	121.
168	1975 1976 1978 1978 1981 1982 1983 1984 1985	.93 1.27 .46	.215 .466 .15	169	1 985 1 975 1 976 1 978 1 981 1 982 1 983 1 984 1 985	4.9 .25 <.05 .05 .019 .42 .020 .13	.083 <.03 .014 .006 .119 .005 .027

Site	Year	pCi/gm	μCi/m²	Site	Year	pCi/gm	μCi/m²
170	1975 1976 1978 1981 1982 1983 1984	<.02 :07	<.006 .02	171	1975 1976 1978 1981 1982 1983 1984 1985	.08 3.4 .12 .05 .14 .15 .050 .016	.023 .89 .032 .013 .037 .030 .009
172	1975 1976 1978 1981 1982 1983 1984 1985	.67 .59 1.93	.177 .150 .523	173	1975 1976 1978 1981 1982 1983 1984 1985	20.1 20.6 7.3	6.49 4.20 1.54 2.87
174	1975 1976 1978 1981 1982 1983 1984 1985	1.36 1.79 .53 .63 14.8 .90 .24	.449 .59 .071 .137 4.51 .185 .032 .248	175	1975 1976 1978 1981 1982 1983 1984	.68 .61 .06	.229 .18 .015
176	1975 1976 1978 1981 1982 1983 1984	.14	.048 .040 .054	177	1975 1976 1978 1981 1982 1983 1984	.06 .10	.021
178	1975 1976 1978 1981 1982 1983 1984	<.02 .12 .08 .07 .13 .050 .16 .12	<.006 .03 .022 .018 .033 .012 .037	179	1975 1976 1978 1981 1982 1983 1984	<.02 <.05	<.006 <.03
180	1975 1976 1978 1981 1982 1983 1984	<.02 <.05 .01 .03 .22 .020 .020	<.005 <.03 .003 .008 .056 .004 .004 .003	181	1975 1976 1978 1981 1982 1983 1984	.18 5.4 .33 17.4 1.45 12.2 .070 8.9	.041 1.6 .092 2.83 .386 2.64 .016 2.09

Site	Year	pCi/gm	μCi/m²	Site	Year	pCi/gm	μCi/m²
182	1975 1976 1978 1981 1982 1983 1984	.11	.035	183	1975 1976 1978 1981 1982 1983	<.02 <.05	<.007 <.03
	1985	.23	.062		1 985	.03	.008
184	1975 1976 1978 1981 1982 1983 1984	.02 <.05 .02 .22 .09 1.14 .060	.006 <.03 .005 .047 .024 .056	1 85	1975 1976 1978 1981 1982 1983 1984	.04	.012 .090
	1 985	.04	.008		1 985	.02	.005
186	1975 1976 1978 1981 1982 1983 1984	.05 <.05 .06 .12 .11 .040	.015 <.03 .018 .034 .031 .009	187	1975 1976 1978 1981 1982 1983 1984	<.02 <.05 .01	<.007 <.03 .032
	1 985	.06	.015		1 985	.05	.013
188	1975 1976 1978 1981 1982 1983 1984	<.02 .05</.07</.04</.09</.05</.22</td <td><.006 <.03 .018 .009 .027 .009 .054 .009</td> <td>189</td> <td>1975 1976 1978 1981 1982 1983 1984</td> <td>.02 <.05 .03</td> <td>.006</td>	<.006 <.03 .018 .009 .027 .009 .054 .009	189	1975 1976 1978 1981 1982 1983 1984	.02 <.05 .03	.006
190	1975 1976 1978 1981 1982 1983 1984	<.02 <.05 .03 .02 .09 <.003 .018 .006	<.006 <.03 .010 .004 .023 <.001 .005 .001	191	1975 1976 1978 1981 1982 1983 1984	.03 <.05 .16	.008 <.03 .041
192	1975 1976 1978 1981 1982 1983 1984	.14 <.05 .01	.045 <.03 .003	193	1975 1976 1978 1981 1982 1983 1984	<.02 <.05 .02	<.006 <.03 .006
	1 707	.011			1 707	. 477	

Site	Year	pCi/gm	μCi/m²	Site	Year	pCi/gm	μCi/m²
194	1975 1976 1978 1981 1982 1983 1984 1985	<.02 <.05 .01	<.006 <.03 .002	195	1975 1976 1978 1981 1982 1983 1984 1985	.15 .30 .29 .06 .04 .018 .070	.045 .09 .012 .015 .010 .004 .019

APPENDIX B
FIDLER SURVEY DATA

FIDLER READINGS

DATE -- 19 SEPT 1985 **NOTES** -Use red ink, pencil, or type.
-Rows are numbers.

PLACE - Ft. Dix BOMARC Site -Columns are letters.

-Do the whole left column first,

PEOPLE- Maher, Caldwell, Gage then finish the right.

		··.										
1			 ,,,,			= = = 1 + 1			:======: ! v:m #		=====: uuo	===: ,,,
COL	ROW	KIT	HVl	HV2	HV3	*	COL	ROW	KIT # ======	HVl	HV2 ====	H' ==:
A	1	2	160	1400	2000	•	В	29	11	450	1600	1 1
A	2	2	250	1500	2000		В	30	11	350	1200	1 1
A	4	2	175	800	1400	*	В	32	11	425	1800	2:
A	6	2	150	750	1500	*	В	33	11	400	1300	2:
A	8	2	180	1000	1500	*	В	34	11	400	1700	2:
A	10	2	175	1000	1400	*	В	35	11	400	800	1:
A	12	2	160	900	1400	*	В	36	11	300	700	1:
A	14	2	160	1000	1250	*	В	37	11	325	900	1
A	16	2	150	1000	1300	*	44040-0404	XXXXX	XXXXXXX	<u> </u>		XXX
A	18	2	200	800	1500	*	С	1	2	175		1 10
A	20	2 -	200	1000	1500	*	С	2	2	200	490	
A	22	2	175	1000	1800	*	C	4	2	225		
A	24	2	160	1000	1500	*	С	6	2	200		
A	25	2	160	1000	1500	*	C	8	2	225		
A	27	2	200	800	1500	*	C	10	2	150		
A	29	2	180	1000	1600	*	C	12	2	175		
A	30	2	200	1000	1500	*	С	14	2	200		
] A	32	2	160	800	1300	*	C	16	2	225		
A	33	2	150	500	1200	*	C	18	2	250		
A	34	2	200	1400	1800	*	C	20	2	200	500	
A	35	2	150	800	1400	*	C	22	2	300	600	
A	36	2	125	750	1250	*	С	24	2	250		
A	37	2	225	750	1250	•	C	25	2	250	900	
XXXXX	XXXXX		XXXXX		XXXXX	*	C	27	2	350	1400	1 1:
B	1	11	350	1250	2000		C	29	2	260		1 1
В	2	11	250	1500	2000	<u> </u>	C	30	2	260		1 1
В	4	11	275		1000		С	32	2	200		
B	6	1/1	275	600	900		C	33	2	240		
B	8	11	260		1200	-	C	34	2	250		
В	10	11	280	800	1200	1 *	C	35	2 2	300 250		
В	12	11	250	800	1300	*	C	36	2	225		1 1
8	14	11	275	800	1500	*	C XXXXX	37 XXXXX	XXXXXXX		600 XXXXX	XXX
3	16	11	275			<u>, </u>			XXXXXXX			
B	16	11	250						XXXXXXX			
В	20	11	290						XXXXXXX			
В	22	11	425						XXXXXXX			
B	24	11	325						XXXXXXX			
В	25	11	325									
B	27	11	425	1300	1,00	! *	XXXXX	AAAAA	XXXXXXX	IXXXXX	IVVVVV	: AA

FIDLER READINGS

DATE -- 19 SEPT 1985

NOTES -Use red ink, pencil, or type.

-Rows are numbers.

PLACE - Ft. Dix BOMARC Site

PEOPLE- Maher, Caldwell, Gage

-Columns are letters.

-Do the whole left column first,

COL	ROW	======: KIT #	HV1	HV2			COL	ROW	======= KIT #	===== HVl	===== HV2	:===: 'H
====				i			=====				=====	
ו סו	1	10	275	750	1000		F	ı	10	200	•	•
D	2	10	250	500	1000	*	F	2	10	250		
D	4	10	225	500	750	*	F	5	1 10	250		
T D	6	10	225	750	1000	*	F	6	10	350		<u> </u>
D	8	10	250	750	750	*	F	7	10	275		
ו <u>מ</u>	10	10	225	500	1000	*	F	9	10	325		
l a	12	10	250	500	750	*	F	10	1	1300		
l d	14	10	250	750	1000	*	F	13	T	375		
	16	10	275	500	750	*	F	15	1	275		
D	18	10	300	750	1000	*	F	17	1	400		
D	20	10	250	500	1000	*	F	18	1	475		
D	22	10	250	750	1000	*	F	20	1	275		
a	24	10	1000	3250	3000	*	F	22	1	250	500	
D	25	10	1000	3250	3000	*	F	24	1	450	1500	1 18
Q (27	10	200	475	500	*	F	25	1	330	700	110
ם	29	10	325	750	1000	*	F	27	1	1700	8000	1110
ו מ	30	10	375	1500	1500	*	F	29	1	3500	11000	180
D	32	10	250	500	750	*	F	30	1	1400	7000	4
D	33	10	600	2750	2500		F	32	1	300	700	1
D	34	10	475	1000		<u> </u>	F	33	1	375	1000	1
D	35	10	350	1250	1500	*	F	34	1	425	1100	1 15
ם	36	10	300	1000	1100	*	F	35	Ţ	600	3250	1 3
D	37	10	325	750			F	36	1	400	1000	1 15
	XXXXX	XXXXXXX					F	37	1	350	1200	
Е]]	11	110	900	1500		XXXXX	XXXXX	XXXXXXX	XXXXX	XXXXX	XXX
Е	2	11	110	500	1000	*]	н	1	1	250	900	
Ε	6	11	160	800	1500	*	Н	2	11	350	750	
Ε	10	11	130	480	1000	*	Н	3	1	350	- Annual Control of the Control of t	
Ε	14	11	140	600	1000	*	Н	5	1	300	900	
Ε	79	11	140	500			Н	7	1	250		
E	20 [11	140	500	1200	7	H	9	1	350	600	
E	24	11	200	1200	1600		Н	11	2	200		
3	25	ll	250	1400			H	13	2	350	750	
E	29	11			1800			15	5	35C		
E	30 l	11	220		1500			17	2	290		
E	33 [11	250		1000		Н	19	2	200		
Ε	34	11	275		2000		н	55	5	190		
E	35	11	225		2000		H	24	2	240		
2	36	11			1500		Н	27	2	220		
Е	37				1250		Н	29	2	240		
XXXXX	XXXXX	XXXXXXX	XXXXX	XXXXX	XXXXX	*	н	31	2	470	2000	25

DATE -- 19-SEPT-1985

NOTES -Use red ink, pencil, or type.
-Rows are numbers.

PLACE - Ft. Dix BOMARC Site

PEOPLE- Maher, Caldwell, Gage

-Columns are letters.

-Do the whole left column first,

! !												
=====	.====:	=======	=====	=====		==:						===
COL	ROW	KIT #	HVl	HV2	HV3	*	COL	ROW	KIT #	HVl	HV2 ====	H
н	33	2	360	1400	2000	: :	J	36	1	240	1600	2
Н	34	2	250	750	1100	*	J	37	1	400	2500	2
н	35	2	900	2500	2500	*	XXXXX		XXXXXXX			
Н	36	2	250	500	1000	*	К	1	10	110	800	1
Н	37	2	325	1000	1000	*	К	2	11	140	500	1
XXXXX	XXXXX	XXXXXX	XXXXX	XXXXX	XXXXX	*	K	5	11	240	3000	3
Ī	1	11	130	600	1400	*	К	9	11	310	600	1
I	2	10	275	500	900	*	K	13	11	180	1600	1
I	3	11	160	900	1400	*	K	17	11	225	1600	1
I	5	10	250	600	900	*	K	19	11	350	2500	2
I	7	10	225	500	900		К	23	11	490	4000	
I	11	10	250	500	1000	*	K	24	11	460	4000	4
I	13	10	300	750	1100		K	28	11	480	5000	5
I	15	10	350	750	1250		R	29	11	200	1400	1
I	19	10	250	500	900	*	XXXXX	XXXXX	XXXXXXX		XXXXX	XX.
I	23	70	250	750	900		L	1	1	260	600	
ĭ	24	10	300	750	1000		L	2	11	250	490	1
Ţ	29	10	300	750	750	*	L	5	10	200	600	
Ţ	31	10	350	1000	1000	*	L	9	11	110	500	
ĭ	33	10	375	1000	1250	*	Ĺ	17	11	140	500	1
I	34	10	450	1400	1500	*	L	19	11	180	600	1
I	35	10	3250	11000	10000	*	L	23	11	150	600	1
I	36	10	500	1500	1600	*	L	28	11	150	500	
I	37	10	260	1000	1250	*	L	29	11	150	490	
XXXXX	XXXXX	XXXXXXX	XXXXX		XXXXX		با	33	11	150	500	
J	1	1	250	1000	1600		L	34	11	140	900	
J	5	10	300	800	1200		L	35	11	210	1800	2
J	3	1	200	600	1100		L	36	11	170	1500	2
J	5	1	390	1500	1900		Ĺ	37	11	240	1600	2
J	7	1	310	1000	1200		XXXXX	XXXXX	XXXXXXX	XXXXX	برجود المستحدث	IXX.
J	11	1	390		1900	<u> </u>	M	1	1 1	290	600	1 1
J	13	1	450	1000	1500		M	2	11	160	500	<u> </u>
J	15	1	600					3	11	160		
J	19	1	360					5	<u> </u>	250		
Ĵ	23	1	350	·				7	11	150		
J	24	1	300					9	10	300		
J	29	1	260			·		11]	260		
J	31	1	300					13	1	260		
J	33	1	240					15	1	240		
J	34	1	210					17	j	250		
J	35	1	480	2000	3000	7	М	19	Ţ	310	600	1

FIDLER READINGS

DATE -- 19-SEPT-1985

NOTES -Use red ink, pencil, or type.

-Rows are numbers.

PLACE - Ft. Dix BOMARC Site

PEOPLE- Maher, Caldwell, Gage

-Columns are letters.

-Do the whole left column first,

1			· ·									
; .		:======:										
COL ====	ROW	KIT #	HVl	HV2	HV3 ====	*		ROW	KIT # ======	HVl ====	HV2 ====	HV
i m i	21	1	250	490	600	*	Ì P	i 35	10	425	•	•
M	23	i i	260	600	600			36	i	360		
M	24	1	310	490				37	11	240		
M	26	1	200	450			XXXXX		XXXXXX			
M	28	1	260	500				35	10	400	1100	
M	29	1	300	600	1000	_		36	ī	210		
М	31	1	240	490	600	*		37	11	180		
М	33	11	210	1800	2500	*		XXXXX	XXXXXX	والمستوال والمستوال	XXXXX	
M	34	1	250	700	1000	*	R	35	10	325	1000	12
M	35	1	400	1500	2000	*	R	36	1	420	1200	
M	36	1	380	800	1100	*	R	37	11	350	1400	19
M	37	1	460	1600	2400	*	XXXXX	XXXXX	XXXXXXX	XXXXX	XXXXX	
XXXXX	XXXXX	XXXXXXX	XXXXX	XXXXX	XXXXX	*	S	35	10	350	1200	16
N	1	1	290	750	1500	*	Ş	36	1	470	1250	1 20
N	2	10	500	500	700	*	S	37	11	270	1800	23
N	3	10	220	500	800		XXXXX	XXXXX	XXXXXXX	XXXXX	XXXXX	XXX.
N	5	1	250	500			T	35	10	400	1200	16
N	7	10	230	500			T	36	1	460		19
N	9	1	250	490		*	Ţ	37	11	290		22
N	11	1	240	700		*	XXXXX	XXXXX	XXXXXXX			the second second second
N	13	11	140					35	10	275		135
N	15	1	300	490			U	36	1	460	1400	19
N	17	11	200	500		*	U	37	11	220	1000	14
N	19	1	260	500		*	XXXXX	XXXXX	XXXXXXX		-	XXX.
N	51	11	150	700	1000		l V	35	10	375		1 13
N	23	1	290	800	1100		V	36	1	350	*******************	
N	24	11	170	600	800	*	V	37	11	230	1100	16
N	26	1	300	900	1500	-	XXXXX	XXXXX	XXXXXXX			
N	26	11	180	1000	1500		W	35	10	425		17
N	29	1	250	500	800		W	36	<u> </u>	360	900	
N	31	11	210	600	1000		W	37	11	250	1200	16
N	33	<u> </u>	400	1500	2400					XXXXX		
N	34	11			1500			35	10	400		
	35	1			2600			36	1		750	
	36 37	11	140 230		1400			37	11 XXXXXXX		1000	
		11 XXXXXXX						35	10	375		
0	35	10			1300			32	1 10	360		140
	36	10	260	1100	1500	*	V	37			1300	
	37	11	150	200	1 2000		VVVVV	VVVVV	XXXXXXX			
		XXXXXXX		VVVVV	VVVVV	•	VVVVV	VVVVV	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	VVVVV	1 <u>0 0 0 0 0</u>	1000
IVVVVVI	ΑΛΛΛΛ)	ΛΛΛΛΛΛ	ΑΛΛΛΛ	ΛΛΛΛΛ	ΛΛΛΛΛ		ΛΛΛΛΛ	ΛΛΛΛΛ		IVVVVV	<u> </u>	<u>: AAA</u>

DATE -- 19-SEPT-1985

NOTES -Use red ink, pencil, or type.

-Rows are numbers.

PLACE - Ft. Dix BOMARC Site

PEOPLE- Maher, Caldwell, Gage

-Columns are letters.

-Do'the whole left column first,

													
22222				=====	======	= = =	.=====		====	===		*====:	===:
COL	ROW	KIT #	HVl	HV2	HV3	*	COL	ROW	KIT	#	HVl	HV2	H'
=====	====	======	=====	=====	=====	*	======	22222		===	=====	=====	==:
Z	35	10	325	1200	1400	*							
Z	36	1	325	1000	1400	*							
Z	37	11	150	800	1400	*	[
XXXXX	XXXXX	XXXXXXX	XXXXX	XXXXX	XXXXX	*	<u>[</u>	•					
AA	35	10	325	500	1400	*							
AA	36	1	300	500	1000		<u>[</u>						
AA	37	11	200	600	1500	*	<u>[</u>						
XXXXX	XXXXX	XXXXXXX											
ВВ	35	10	260	700			_						
BB	36	1	300	700	700	*							
BB	37	11	200	1000	1600	*	_						
XXXXX	XXXXX	XXXXXXX	XXXXX	XXXXX	XXXXX	*							
CC	35	10	300	600	800	*							
CC	36	1	240	600	1400	*	<u>_</u>						
CC	37	11	120	800	1300	*							
XXXXX	XXXXX	XXXXXXX	XXXXX	XXXXX	XXXXX	*							
מס	35	10	325	900	1300	Ŕ							
aa	36	1	260	500	900	*							
DD	37	11	150	800	1300	*							
XXXXX	XXXXX	XXXXXXX	XXXXX	XXXXX	XXXXX	*						•	

Distribution List

HQ USAF/SGPA	Copies
Bolling AFB DC 20332-6188	1
AFOMS/SGPR Brooks AFB TX 78235-5000	1
SAF/MII/MIQ Washington DC 20330-5000	1 ea
HQ USAF/LEE Bolling AFB DC 20332/5000	1
HQ AFSC/SGPB Andrews AFB MD 20334-5000	1
HQ MAC/SGPB Scott AFB IL 62225-5001	10
USAF Clinic McGuire/SG/SGPB McGuire AFB NJ 08641-5300	1 ea
438 MAW/DE McGuire AFB NJ 08641-5000	1
438 MAW/CC/PA/JA McGuire AFB NJ 08641-5000	1 ea
DTIC Cameron Station Alexandria VA 22314	2
Alexandria VA 22314	2